
PUMICE: Processing-using-Memory Integration
with a Scalar Pipeline for Symbiotic Execution

Socrates S. Wong
Computer Systems Laboratory

Cornell University
Ithaca, NY 14853 USA

ssw96@cornell.edu

Cecilio C. Tamarit
Computer Systems Laboratory

Cornell University
Ithaca, NY 14853 USA

ct652@cornell.edu

José F. Martı́nez
Computer Systems Laboratory

Cornell University
Ithaca, NY 14853 USA

martinez@cornell.edu

Abstract—Existing SIMD extensions in scalar CPUs (e.g.,
SSE, AVX, etc.) can leverage instruction-level parallelism (ILP)
because of their tight integration with the CPU pipeline. However,
the vectors they employ are quite short, and this limits their
ability to exploit data-level parallelism (DLP). On the other
hand, processing-using-memory (PUM) accelerators are capable
of exploiting massive amounts of DLP, as they typically perform
computation on very long vectors (tens of thousands of elements)
within the memory itself. Recent work demonstrates that order-
of-magnitude speedups can be achieved by these architectures for
a variety of workloads over area-equivalent multicore CPUs with
SIMD extensions. Still, PUM architectures are largely decoupled
from the CPU itself, thereby limiting their ability to tap the
CPU’s ILP the way SIMD extensions do.

In this paper, we propose PUMICE, a tightly integrated
CPU-PUM architecture that simultaneously exploits DLP and
ILP for very long vector operations. As a result of this tight
integration, PUMICE delivers significant performance gains: Our
experimental results show speedups of up to 2.2× (1.4× on
average) over a state-of-the-art decoupled approach.

Index Terms—Associative processing, associative memory, vec-
tor processors

I. INTRODUCTION

Processing-in-memory (PIM) has gained attention in the last
few years as a way to tackle the von Neumann bottleneck
by bringing computational units closer to data. Among them,
processing-using-memory (PUM) is an in situ approach that
focuses on performing operations within the memory structure
itself. Notable recent work in general-purpose PUM involves
bitline computation [7], [10] and associative processing [1],
[3], [4], [6], [13]. Evaluations of these solutions report very
large speedups, as they exploit massive data-level parallelism
(DLP) over very long vectors of data (tens of thousands of
elements).

One limitation of these proposals is that they are envisioned
as largely decoupled accelerators that process one vector in-
struction at a time, with no meaningful support for instruction-
level parallelism (ILP). At the same time, SIMD short-vector
extensions (e.g., Intel’s SSE or AVX) in general-purpose CPUs
are typically tightly integrated with the CPU pipeline, and this

This work was supported in part by the Semiconductor Research Corpo-
ration (SRC) through the Center for Research on Intelligent Storage and
Processing-in-memory (CRISP, part of the JUMP program) and the ACE
Center for Evolvable Computing (ACE, part of the JUMP 2.0 program), both
co-sponsored by DARPA; and by the NSF Science and Technology Center for
Programmable Plant Systems (CROPPS, award #2019674). Cecilio Tamarit
was also partially sponsored by the Fulbright Program.

enables them to exploit ILP. However, SIMD extensions are
very limited in the amount of DLP they can exploit, primarily
because of their small vector sizes.

This paper presents the first general-purpose architec-
ture that tightly integrates a CPU with a PUM-based
very long vector unit. The resulting processing element can
exploit DLP and ILP simultaneously and highly effectively.
Our results show speedups for the Phoenix benchmark suite
of up to 2.2× (1.4× on average) over PUM architectures
that follow a decoupled accelerator model. This represents a
speedup of over two orders of magnitude over a server-class
CPU with SIMD extensions.

The main contributions of this paper are:
1) An analysis of the performance limitations that adopting

a decoupled accelerator model brings to PUM very long
vector architectures.

2) A microarchitectural approach to tightly integrate a
PUM-based very long vector architecture and a CPU
to exploit both DLP and ILP.

3) An experimental evaluation of the performance of our
integrated approach compared against a state-of-the-art
decoupled PUM accelerator.

II. BACKGROUND

A. Processing-using-Memory
Processing-using-memory (PUM) leverages memory struc-

tures to perform computation in place, with the goal of
extracting large amounts of data-level parallelism (DLP) ef-
ficiently. Some general-purpose PUM approaches [1], [6] are
based on bitline computation [7], [10], relying on the existing
precharging and sensing circuitry to perform bitwise logic
operations in place, serially across the bits of an element,
and in parallel over many elements across bitlines. Associative
processing (AP), on the other hand, is a PUM architecture
that makes use of CAM arrays to perform bulk searches and

Algorithm 1 AP-based Vector OR (vor.vv v3, v1, v2)
Input: v1, v2 ▷ Vector operands
Output: v3 ▷ Output vector

1: Search 1 in v1 ▷ Set tag bits if v1[i] == 1
2: Search-Accum 1 in v2 ▷ Set tag bits if v2[i] == 1
3: Update v3 ← tags ▷ Set v3 to tags



Fig. 1: The CAPE very long vector PUM architecture [4]. The
control processor (CP) is a tiny in-order RISC-V CPU with
standard vector extensions. Vector operations are relayed to the
AP Array (also referred to as Compute-Storage Block, or CSB)
through the Vector Control Unit (VCU), which converts them
into sequences of PUM microinstructions. A Vector Memory
Unit (VMU) facilitates data movement between CAPE and
main memory.

updates that effectively apply a truth table, often bit-serially
over thousands of elements at once [3], [4], [13]. Algorithm
1 shows the example of a vector OR instruction, implemented
as a bit-parallel associative algorithm. Assuming vectors with
tens of thousands of 32-bit integers, in lines 1 and 2, all bits
of every element are checked simultaneously to determine
whether their value is 1, and a tag is set for every match.
In line 3, following the truth table of the OR operation, the
output vector is set to the result of the searches. Unlike AP
logic instructions, AP arithmetic instructions (not shown in
Algorithm 1) process one bit at a time. However, being able
to operate simultaneously on tens of thousands of elements
more than makes up for their bit-serial nature.

Recent AP architecture proposals [3], [4], [13] execute such
algorithms over massive amounts of data in parallel (tens
to hundreds of thousands of elements). Works like Hyper-
AP [13] focus on exploring AP array-level optimizations for
CMOS and emerging memory technologies, whereas works
like CAPE [3], [4] explore full-system implementations. At
a high level, CAPE leverages the RISC-V length-agnostic
standard vector extensions [12] to provide the programmer
with direct access to very long vector processing capabilities
with native ISA support, without the use of specific APIs
or accelerator-specific programming models. Both approaches
yield very high performance running a broad variety of appli-
cations.

At the architecture level, PUM-based very long vector
architectures are ultimately subordinated to the CPU, which
offloads vector instructions to a decoupled accelerator. A
control unit translates the instructions into a series of bulk
searches and updates, to be performed on the AP array.

B. Vector architectures
Vector and SIMD architectures both have the capability

to exploit data-level parallelism by operating over multiple
vector elements simultaneously, the main difference being
flexibility in terms of bitwidth and vector length. Traditional
long vector architectures (typ. 32-128 elements) have been
popular in the context of high-performance computing (HPC),

and commodity off-the-shelf microprocessors often boast short
vector SIMD extensions (e.g., Intel AVX) able to operate
over a small amount of elements simultaneously by means
of replicating existing pipeline resources.

Previous works have studied the importance of decoupling
memory and computation in traditional long vector architec-
tures to increase ILP, as well as operand chaining of intermedi-
ate results for decreased data movement [5]. There have been
attempts to integrate traditional long vector architectures with
microprocessor pipelines [8], and more recent work studies the
energy efficiency potential of such an approach in the mobile
landscape [11]. In this paper, we study the integration of PUM-
based very long vector architectures (tens of thousands of
elements) with a scalar processor pipeline. To the best of our
knowledge, this is the first proposal to integrate tightly a CPU
and a massively parallel PUM-based vector unit.

III. BOTTLENECK ANALYSIS

In this section, we lay out the limitations that the decoupled
accelerator model imposes on very long vector PUM architec-
tures. To do so, we model two different design points based
on the CAPE architecture with the parameters specified in its
original publication [4].

A. Experimental setup

We replicate the gem5 cycle-approximate simulation envi-
ronment described in the original CAPE paper [4] to model the
CAPE PUM architecture and run the same workloads as the
original CAPE work (the entire Phoenix benchmark suite [9]),
with the input sizes specified in Table II. We run experiments
with the two AP array sizes in the original CAPE paper, 32k
and 131k vector elements, and the corresponding delays. We
then break down whole-program execution cycles into four
categories depending on AP array (in)activity. The results for
both CAPE32k and CAPE131k are shown in Figure 2.

TABLE I: Control processor and memory system

Core configuration 2-issue in-order core, 2.7GHz
4/1/1/1 Int/FP/Mem/Br units
5+5-entry LSQ
Tournament BP, 4,096-entry BTB, 16-entry RAS

L1 D/I cache 32 kB, 8-way, 64 B block, LRU
2-cycle tag/data latency

L2 cache 1 MB, 16-way, 512 B block, LRU
14-cycle tag/data latency

Memory 4H HBM, 8 channels
16 GBps/512 MB (per channel)

TABLE II: Description of the evaluated workloads

Application Input Size O3CPU Runtime
lreg 500 MB 4.4 · 109 cycles
hist 1.4 GB 1.4 · 1010 cycles
kmeans 100 k 5.0 · 109 cycles
matmul 1,000×1,000 7.0 · 109 cycles
pca 1,500×1,500 1.7 · 1010 cycles
strmatch 500 MB 6.8 · 1010 cycles
wrdcnt 10 MB 4.9 · 109 cycles
revidx 100 MB 6.0 · 108 cycles



(a) CAPE (32k elements) (b) CAPE (131k elements)

Fig. 2: Per-workload breakdown of the AP Array utilization for two PUM accelerator configurations of different sizes running
the Phoenix benchmark suite. Green indicates the AP is in use, yellow or blue that it is waiting for commands or data that are
being offloaded to it, and gray that it is waiting for the scalar CPU.

B. Discussion

Figure 2 depicts the utilization of the PUM array for the
two baseline accelerator designs when running their respective
benchmarks. It is clear that the AP array is being underutilized
across all workloads, and in most cases severely so. This is due
to three main issues: On the one hand, moving data introduces
significant delays, whether due to (1) load/store instructions
(blue) or (2) the control signals themselves (yellow). On the
other hand, a non-negligible amount of cycles is attributed
mostly to the nature of the workloads, but also to (3) stalls in
the scalar processor (gray).

This suboptimal utilization leads to an effective perfor-
mance that is far lower than the theoretically achievable limit
permitted by the memory bandwidth and the computational
throughput. Indeed, an associative PUM architecture like
CAPE will mitigate the von Neumann bottleneck because
increasingly larger arrays enable massively parallel computa-
tion with far less data movement after the initial compulsory
access. However, at these utilization rates and with this degree
of decoupling, the true potential of such an approach remains
untapped.

By mitigating the effect of the bottlenecks described in this
section, the worst-case scenario (revidx) shows potential
for up to 4x performance improvement if a better utilization
of the associative processor can be achieved, provided the
given workload possesses the required degree of data-level
parallelism. In the following sections, we describe the design
and evaluate the effectiveness of an architecture that aims to
achieve a higher degree of ILP by means of tight integration,
enabling the overlap of AP array computation cycles with
command distribution and data transfer latencies.

IV. PROPOSED ARCHITECTURE

We have empirically demonstrated how PUM very long
vector architectures that follow the accelerator model suffer
from severe underutilization. In this section, we introduce
PUMICE, an architecture that tackles this issue by means
of tight integration of a PUM very long vector unit with a
general-purpose CPU pipeline. This reduces data movement,
ALU and control complexity, and maximizes both DLP and
ILP to increase performance.

Fig. 3: PUMICE architecture diagram. The associative proces-
sor (AP Array) and its related structures are integrated into the
pipeline as a Vector Unit, as opposed to the more conventional
decoupled accelerator model.

A. Overview of the pipeline

We envision integrating the PUM very long vector unit as
a functional unit that requires its own scheduling logic. Fur-
thermore, the CPU pipeline has to support mixed speculation:
Scalar instructions can be executed speculatively while vector
instructions cannot, as any rollback would be too costly due
to the sheer length of the vectors. To accommodate this, we
propose a Vector Queue to interface with the Vector Unit and
guarantee that it will only schedule vector instructions once the
architectural state can be updated safely. Once dependencies
are resolved, the committed instructions in the Vector Queue
are scheduled by the Vector Scheduler. Unlike previous PUM
accelerator designs, the queueing and scheduling capabilities
enable two important behaviors of traditional long vector
architectures that are not present in proposed PUM designs
and improve instruction-level parallelism:

(1) Operand chaining and back-to-back execution, by
allowing several vector instructions to be in flight simulta-
neously, so that they can be executed once their operands
are ready. This is in contrast to previous decoupled PUM
accelerators that process them one at a time. The goal is to
hide the command distribution delay (Figure 2, yellow) that



arises when the scalar CPU offloads the instructions to the
accelerator.

(2) Decoupling of memory and computation, achieved by
dividing the control of the PUM array in two separate units:
The AP Operation Unit receives all non-memory operations
from the scheduler and translates them into the microcode that
will drive the PUM array so that it performs the searches and
updates that implement said operation. Concurrently, the AP
Memory Unit receives memory operations and interfaces with
main memory in a decoupled manner, buffering the loads to
(and stores from) the PUM array while it is busy performing
other operations (Figure 2, blue).

Overall, these two mechanisms allow operations of all kinds
to execute back-to-back, memory and computation to overlap,
and also the running ahead of independent arithmetic opera-
tions during the long latencies of memory accesses (Figure 2,
overlapping blue with green).

B. Mixed speculation
Integrating a very long vector unit involves supporting four

classes of instructions that interact with the pipeline and
each other in a variety of ways. Most importantly, the scalar
processor will have to handle some of them non-speculatively
while retaining speculation in some aspects for others:

(1) Scalar read and write: These are the scalar-only instruc-
tions from the base ISA. Their execution in the CPU pipeline
remains unchanged, and speculative execution is permitted as
usual.

(2) Scalar read and write with vector/status register read:
Some RISC-V vector instructions that fall in this category
include setvl, vextract, and setvb, which produce
a single return value that is sent to the scalar pipeline.
Speculative execution is also safe. This is due to the fact
that all modifications to the microarchitectural state occur in
the scalar side of the pipeline, which can readily support
checkpointing/rollback mechanisms to deal with exceptions
without as much of an impact in area, performance, and en-
ergy. However, all vector instructions must be dispatched non-
speculatively to the queue in the Vector Unit. As many of the
produced values are often used by later scalar instructions or
resolving branches, by allowing some of the values produced
by these instructions to be utilized speculatively we prevent
stalls present in the accelerator model, where the CPU has to
wait for said instruction to finish its execution and send back
the result.

(3) Scalar read, vector register write: These are the vector
instructions that take a scalar value as an input. An example
of this would be vadd.vx, which adds a scalar value to all
elements in a vector. This type of instruction is not issued
until all the scalar values it depends on are ready, and then
it is kept in the Vector Queue until the scalar instructions it
depends on are retired. This queue is similar to a store queue
in a traditional processor, and will squash any pending vector
instructions when branch mispredictions or exceptions occur.

(4) Non-scalar, vector register write: Considered to be a
specialization of the latter, with the major difference being that
they do not have a scalar dependency and thus can be issued
immediately to the Vector Queue. Examples of this would be

vector bitwise and arithmetic instructions, such as vand.vv
or vadd.vv.

V. EVALUATION

In this section, we describe our experimental methodology
and analyze the results we obtained for PUMICE, the inte-
grated architecture we proposed in Section IV.

A. Methodology

As was the case in Section III, we utilized gem5 [2], a cycle-
approximate simulator, with the same configuration described
in Table I, to simulate PUMICE over the two PUM accelerator
design points based on the orginal CAPE paper [4]. We then
evaluate our architecture as in the bottleneck analysis, with
the same set of workloads from the Phoenix benchmark suite,
again with the specific parameters and baselines shown in
Table II. Furthermore, we use two small microbenchmarks
to highlight the main individual benefits of our proposal
separately.

B. Results

1) Microbenchmarks: We use two small microbenchmarks
to study the impact of our architecture on computational
throughput and the degree of compute-memory overlap that
can be achieved.

Vector Throughput Microbenchmark — The vector through-
put microbenchmark measures the number of cycles it takes
for the evaluated architectures to execute 1,000 of the in-
structions listed. The microbenchmark contains ten vector
arithmetic or bitwise logic operations. The instructions are
executed in a loop; therefore, this is a measure of how efficient
each of the architectures is at issuing and completing the
instructions.

TABLE III: Vector Throughput Microbenchmark Results
(cycles per 1000 instructions)

Instr. CAPE32k PUMICE32k CAPE131k PUMICE131k
vadd.vv 259,157 257,026 260,158 257,027
vmul.vv 3,044,157 3,042,026 3,045,158 3,042,027
vsub.vv 259,157 257,026 260,158 257,027
vand.vv 6,157 4,026 7,158 4,027
vor.vv 6,157 4,026 7,158 4,027
vxor.vv 7,157 5,026 8,194 5,027

The results in terms of vector throughput match our previous
observation (see Section III) that, depending on the workload,
the benefit that can be gained by hiding the command dis-
tribution delay and by increasing concurrency between the
VU and the CP in general can be significant for operations
such as vor and vand, which result in up to 43% fewer
cycles needed for completion. However, as expected, it also
reveals that for longer instructions such as vmul it can have
a negligible impact.

Mixed Load-Compute Microbenchmark — To test the over-
lap of memory and computation enabled by PUMICE, the
following microbenchmark executes different proportions of
memory and computation instructions back-to-back. In par-
ticular, we run 1,000 random vector instructions, which can
be vector multiplications (vmul) or vector load instructions



Fig. 4: Mixed Load-Compute microbenchmark results.

(vld). The relative amount of each of the instructions varies
with each iteration.

As shown in the plot in Figure 4, PUMICE performs better
when there is a similar amount of vector memory and compute
operations. However, at the extreme end of either spectrum, the
performance of PUMICE becomes similar to that of CAPE–
i.e., no overlap between memory and computation.

2) Phoenix Benchmark Suite: The Phoenix Benchmark
Suite was also used to evaluate the CAPE [4] architecture,
the only difference in our setup being the newer compiler
and that we perform manual loop unrolling to reduce branch
penalties and help expose the available ILP to the hardware.
Considering this, in Figure 5 we can observe that we were
able to largely replicate the CAPE work, modeling their
two different design points in terms of vector length: A
32k-element design, area-equivalent to a single out-of-order
scalar core, and a longer 131k-element variant, comparable
to 2 cores. As in the original work, we observe that when
scaling the CAPE baseline from 32k to 131k AP Array size,
greater performance is not guaranteed. For applications like
wrdcnt, revidx, or strmatch it can actually decrease.
On the other hand, other programs like kmeans and hist see
very significant speedups. The most aggressive CAPE design
obtains a 1.7x speedup over its smaller counterpart, which was
already reported to be 14x (up to 254x) faster than an out-of-
order CPU [4].

With the smallest of our proposed designs, when looking at
the results for PUMICE32k, we observe an average speedup of
1.5x over the CAPE32k baseline. As expected, revidx and
wrdcnt, the applications where the AP Array starved the
most due to unnecessary idling and the effect of command
distribution delay (see Figure 2) are also among the ones
that see the most benefit, with performance increases of
1.8x and 2.2x, respectively. This result is the opposite of
the previous situation, where it seemed like running these
workloads on (increasingly large) CAPEs was not beneficial
or even detrimental, confirming that their low performance
was indeed not only due to the nature of the applications
and their memory access patterns, but also because of the
inability of CAPE32k to exploit the intrinsic ILP of those
specific workloads.

In the case of the larger PUMICE configuration with an

Fig. 5: Performance of the Phoenix benchmarks when ran on
our two proposed architectures, normalized to CAPE32k.

AP Array size of 131k, we observe consistent increases too,
especially in the workloads most sensitive to this. We thus
conclude that even though the command distribution delay
grows with the size of the AP array, we are still able to
hide it successfully, even though higher delays also require
exposing a larger degree of ILP to be hidden, which is the
reason why on average the relative speedup is sometimes not
as high with longer vector sizes. It is also interesting to note
that some workloads benefit more from our optimizations
at the 32k size than from a much larger and more
expensive CAPE131k (area about two full CPU cores as
opposed to one). For example in the case of lreg. On the
other hand, this is not the case for kmeans, as the particular
bottleneck for that one was its low data reuse, so being able
to store a larger working set is more helpful for this workload
than our optimizations.

The ideal applications that leverage everything PUMICE
has to offer should possess a healthy mix of compute and
memory operations and be able to overlap scalar and vector
operations. Applications that follow this pattern include, for
example, matmul and lreg, reaching between 1.6x and 1.8x
performance, respectively, for our 32k configurations. In the
latter, about 1.6x of that 1.8x speedup can be attributed to the
overlap of memory and computation alone.

Overall, although the performance benefit of hiding the
aforementioned delays is highly dependent on how long the
vector instructions make use of the AP Array, an integrated
design results in speedups across the board with no perfor-
mance decreases. No matter what the workload is, PUMICE
will provide increased performance with no additional opti-
mizations needed on the software side. Furthermore, by hiding
and lessening the impact of the command distribution delay,
we have significantly reduced the trade-offs of using larger
vector sizes.

3) Energy and Area Overhead: Using the per-
microinstruction energy figures in the original CAPE
paper [4], we inspect the traces of CAPE and PUMICE to
determine how much energy is required to execute each
application. In Figure 6 we observe that there is actually a
minimal decrease (less than 0.5%) when comparing CAPE
to PUMICE. This is primarily due to savings in leakage
power, as PUMICE is able to finish running the workloads
in a significantly shorter amount of time.



Although the energy overhead for memory operations in
PUMICE is roughly double than that of CAPE due to the
buffering required for overlap, the additional energy cost is
only 2% on average. Depending on the application, it can
range from minor savings (less than 0.1%) in strmatch to
to an increase of 14.8% in revidx and wrdcnt as shown in
Figure 6b. However, memory operations remain a small subset
of all the AP instructions, so this overhead is modest in most
cases.

(a) Normalized Energy Usage

(b) Energy Overhead Breakdown for PUMICE

Fig. 6: The energy consumption of CAPE and PUMICE with
a vector length of 32k.

PUMICE involves a modest area overhead, as most of the
proposed changes involve adding control circuitry and a small
amount of extra buffering. The Load-Store Buffer requires the
capacity to store an entire vector, and a conservative area
estimation for this is 1/32 the total area of the AP, which
stores 32 vector registers. Therefore, the total overhead of our
proposed changes should be well below 5% over the CAPE
design.

VI. CONCLUSION

Previous work had already shown the effectiveness of PUM-
based very-long-vector architectures in exploiting data-level
parallelism, but much performance remained untapped by re-
garding them as accelerators instead of functional units. While
tight integration is not always the answer, our results confirm
that such an approach in this context increases performance
significantly, as it enables exploitation of instruction-level par-
allelism as well, by decoupling memory and computation and
allowing for a smooth back-to-back execution of operations
which maximizes utilization. Particularly, for the applications
studied, our tightly-integrated approach results in speedups
of up to 2.2x over the original accelerator design (1.4x on
average), transparently to the programmer. Performance has

improved across the board, even for workloads that were
previously thought to be unfavorable for the vector and AP
paradigms.

ACKNOWLEDGMENTS

The authors would like to thank Helena Caminal for her
advice, support, and assistance in reproducing the results from
previous work, Kailin Yang for his early discussion and help
in reproducing the results from previous works, and Michael
Woodson for his technical support.

REFERENCES

[1] Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, Satish
Narayanasamy, David Blaauw, and Reetuparna Das. Compute
Caches. In 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 481–492, February 2017. ISSN:
2378-203X.

[2] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar
Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5
simulator, aug 2011.

[3] Helena Caminal, Yannis Chronis, Tianshu Wu, Jignesh M Patel, and
José F Martı́nez. Accelerating Database Analytic Query WorkloadsUsing
an Associative Processor. New York, page 15, 2022.

[4] Helena Caminal, Kailin Yang, Srivatsa Srinivasa, Akshay Krishna Ra-
manathan, Khalid Al-Hawaj, Tianshu Wu, Vijaykrishnan Narayanan,
Christopher Batten, and José F. Martı́nez. CAPE: A Content-
Addressable Processing Engine. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pages 557–569,
February 2021. ISSN: 2378-203X.

[5] R. Espasa and M. Valero. Decoupled vector architectures. In Proceed-
ings. Second International Symposium on High-Performance Computer
Architecture, pages 281–290, San Jose, CA, USA, 1996. IEEE Comput.
Soc. Press.

[6] Daichi Fujiki, Scott Mahlke, and Reetuparna Das. Duality cache for
data parallel acceleration. In Proceedings of the 46th International
Symposium on Computer Architecture, ISCA ’19, pages 397–410, New
York, NY, USA, June 2019. Association for Computing Machinery.

[7] Shuangchen Li, Dimin Niu, Krishna T Malladi, Bob Brennan, and
Hongzhong Zheng. DRISA : A DRAM-based Reconfigurable In-Situ
Accelerator. 2017 50th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 288–301, 2017. Publisher: ACM
ISBN: 978-1-4503-4952-9.

[8] Francisca Quintana, Jesus Corbal, Roger Espasa, and Mateo Valero.
Adding a vector unit to a superscalar processor. In Proceedings of the
13th international conference on Supercomputing, ICS ’99, pages 1–10,
New York, NY, USA, May 1999. Association for Computing Machinery.

[9] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski,
and Christos Kozyrakis. Evaluating MapReduce for Multi-core and
Multiprocessor Systems. In 2007 IEEE 13th International Symposium
on High Performance Computer Architecture, pages 13–24, Scottsdale,
AZ, USA, 2007. IEEE.

[10] Vivek Seshadri, Todd C. Mowry, Donghyuk Lee, Thomas Mullins, Hasan
Hassan, Amirali Boroumand, Jeremie Kim, Michael A. Kozuch, Onur
Mutlu, and Phillip B. Gibbons. Ambit: An In-Memory Accelerator for
Bulk Bitwise Operations Using Commodity DRAM Technology. In
Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture - MICRO-50 ’17, pages 273–287, New York, New
York, USA, 2017. ACM Press.

[11] Milan Stanic, Oscar Palomar, Timothy Hayes, Ivan Ratkovic, Adrian
Cristal, Osman Unsal, and Mateo Valero. An Integrated Vector-Scalar
Design on an In-Order ARM Core. ACM Transactions on Architecture
and Code Optimization, 14(2):17:1–17:26, May 2017.

[12] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste
Asanovic. The RISC-V Instruction Set Manual. I:1356, 2011. ISBN:
9781467303422.

[13] Yue Zha and Jing Li. Hyper-Ap: Enhancing Associative Processing
through A Full-Stack Optimization. Proceedings - International Sym-
posium on Computer Architecture, 2020-May:846–859, 2020. ISBN:
9781728146614.


